数学评课稿(通用4篇)
数学评课稿 篇1《长方形与正方形的周长》是小学数学第六册几何小实践的教学内容,闵行实小的毛爱文老师精心设计了教学过程,重新整合了教学内容,使数学更贴近学生的生活,同时,整堂课充分体现出二期课改中关注学生学习过程的理念和新基础把课堂还给学生的教育理念,不失为一节好课。但是除了毛老师良好的教学基本功和数学素养给我留下深刻的印象之外,学生的表现更加引起了我的关注,整堂课中学生围绕老师的提问积极热烈地开展讨论,大胆发表自己的见解,对计算长方形的周长有各自的想法,并且在和同学的不同观点比对之后,能判断选择出更优的计算方法,同时运用知识的迁移自己得出如何计算正方形的周长。下面就选取学生突出表现的三点做个点评:学生良好的倾听习惯。整节课中,毛老师设计了许多的问题,频率较高,面较广,学生对于老师提出的问题都能作出及时准确地回答,没有重复发言和言不答题的,而且当一个学生的回答有错误时,其他的学生能及时地判断和修改,对于表达不完善的发言,更能加以补充说明。例,师:求长方形台布花边的长度其实是在求什么生1:求花边的长度就是求周长。马上有同学举手表示异意,生2:求花边的长度其实在求长方形台布的周长。 "听"是学生思考和作出回答的前提条件,只有学生进行认真的倾听才能有良好的发言,从而使教学的过程更加流畅,使课堂讨论的气氛更加热烈,学生的思维得以更好的激发 .学生良好的数学语言的表达。整节数学课中,学生的回答充分体现出数学的特点,语言的表达科学,简练。例在第一环节探究长方形的周长环节中,学生展示出3种不同的算式,9+9+8+8=34dm,9×2+8×2=34dm,(9+8)×2=34dm,师:每个算式的意义是什么生1:把长方形4条边的长都加起来就是长方形台布的周长。生2:它是看特征的,长方形的特征是对边相等,所以一定有2个长和2个宽,所以2×8加2×9就得出长方形台布的周长。生3:长方形里有2个长,2个宽,先把1个长和1个宽加起来在×2,就是长方形的周长了。从学生数学语言的运用和表达也看出了这个班级的学生对长方形概念掌握得很好,能清楚地利用特征得出周长的计算方法。
学生良好的数学学习的品质。学习数学除了有良好的习惯更应该有敏锐的观察力和判断力,从而培养优良的学习的品质。在学习好长方形周长时,毛老师设计了一个练习,计算两个长方形图形的周长,其中一个是正方形。学生在交流发言时,首先想到了4×26这样的算式,理由是:长方形是两组对边相等的,把长和宽加起来后乘2,正方形是4条边都相等的,所以只要乘4就可以了。知识的迁移在此时呈现出明显的特点,知识的灵活运用体现出数学的活学活用。另外在课堂最后一个拓展环节中,毛老师设计的一个不规则图形的周长计算方法,并提出问题:求这个图形的面积至少知道几条边哪几条 为什么生1:8条边,并上前一一指出。生2:只要知道2条边即可,因为有几条可以移动,再一一指出。师立刻对此表示肯定和表扬,此时,有一生马上举手:我要提醒同学们不是所有的不规则图形都能巧算的。这个回答的出现让老师和同学对移动部分边长巧算周长又有了新的认识。
当然学生简练流利的表达,具有良好的数学语言和习惯是和老师平时关注学生的发言,培养学生的发言是分不开的。俗话说:台上一分钟,台下十年功,更何况要上好一节课,更是在平时的教学中培养和训练学生的各种能力,好教案,好老师再加好学生才能使短短的35分钟留给他人成就的思考和收获。
《长方形与正方形的周长》是小学数学第六册几何小实践的教学内容,闵行实小的毛爱文老师精心设计了教学过程,重新整合了教学内容,使数学更贴近学生的生活,同时,整堂课充分体现出二期课改中关注学生学习过程的理念和新基础把课堂还给学生的教育理念,不失为一节好课。但是除了毛老师良好的教学基本功和数学素养给我留下深刻的印象之外,学生的表现更加引起了我的关注,整堂课中学生围绕老师的提问积极热烈地开展讨论,大胆发表自己的见解,对计算长方形的周长有各自的想法,并且在和同学的不同观点比对之后,能判断选择出更优的计算方法,同时运用知识的迁移自己得出如何计算正方形的周长。下面就选取学生突出表现的三点做个点评:学生良好的倾听习惯。整节课中,毛老师设计了许多的问题,频率较高,面较广,学生对于老师提出的问题都能作出及时准确地回答,没有重复发言和言不答题的,而且当一个学生的回答有错误时,其他的学生能及时地判断和修改,对于表达不完善的发言,更能加以补充说明。例,师:求长方形台布花边的长度其实是在求什么生1:求花边的长度就是求周长。马上有同学举手表示异意,生2:求花边的长度其实在求长方形台布的周长。 "听"是学生思考和作出回答的前提条件,只有学生进行认真的倾听才能有良好的发言,从而使教学的过程更加流畅,使课堂讨论的气氛更加热烈,学生的思维得以更好的激发 .学生良好的数学语言的表达。整节数学课中,学生的回答充分体现出数学的特点,语言的表达科学,简练。例在第一环节探究长方形的周长环节中,学生展示出3种不同的算式,9+9+8+8=34dm,9×2+8×2=34dm,(9+8)×2=34dm,师:每个算式的意义是什么生1:把长方形4条边的长都加起来就是长方形台布的周长。生2:它是看特征的,长方形的特征是对边相等,所以一定有2个长和2个宽,所以2×8加2×9就得出长方形台布的周长。生3:长方形里有2个长,2个宽,先把1个长和1个宽加起来在×2,就是长方形的周长了。从学生数学语言的运用和表达也看出了这个班级的学生对长方形概念掌握得很好,能清楚地利用特征得出周长的计算方法。
学生良好的数学学习的品质。学习数学除了有良好的习惯更应该有敏锐的观察力和判断力,从而培养优良的学习的品质。在学习好长方形周长时,毛老师设计了一个练习,计算两个长方形图形的周长,其中一个是正方形。学生在交流发言时,首先想到了4×26这样的算式,理由是:长方形是两组对边相等的,把长和宽加起来后乘2,正方形是4条边都相等的,所以只要乘4就可以了。知识的迁移在此时呈现出明显的特点,知识的灵活运用体现出数学的活学活用。另外在课堂最后一个拓展环节中,毛老师设计的一个不规则图形的周长计算方法,并提出问题:求这个图形的面积至少知道几条边哪几条 为什么生1:8条边,并上前一一指出。生2:只要知道2条边即可,因为有几条可以移动,再一一指出。师立刻对此表示肯定和表扬,此时,有一生马上举手:我要提醒同学们不是所有的不规则图形都能巧算的。这个回答的出现让老师和同学对移动部分边长巧算周长又有了新的认识。
当然学生简练流利的表达,具有良好的数学语言和习惯是和老师平时关注学生的发言,培养学生的发言是分不开的。俗话说:台上一分钟,台下十年功,更何况要上好一节课,更是在平时的教学中培养和训练学生的各种能力,好教案,好老师再加好学生才能使短短的35分钟留给他人成就的思考和收获。
数学评课稿 篇2各位老师上午好,很高兴能有机会就昨天下午的三节课和大家进行交流。首先我要说的是能站在这个讲台授课的教师都不简单。三位教师在科学合理设计导学案、精心制作准备教具、渗透高效课堂理念等方面均做了有益的探索,值得我们学习借鉴。在此谨代表我个人对昨天授课的三位教师表示感谢。感谢他们提供了丰富的学习素材,感谢他们给予我思考的机会!本着相互研讨的目的,下面我分别对昨天下午的三节课谈谈自己的看法,不到之处敬请各位同行批评指正。
第一节冷集毕老师所上的课《4.1圆》,总体上能够按照高效课堂的要求,较好的体现了预习、展示和测评(反馈)三大板块,我想从三个方面对本节课谈谈自己的学习体会。简称为“三有”,即有思想、有行动、有突破。首先说有思想,本节课体现了“先学后教”的高效课堂理念,围绕教材让学生分步预习,分步展示,整体反馈,反映教师有比较先进的教育教学思想;其次是有行动,关键是毕老师能把自己的思想转换为实际行动,较好体现肖主任在教研会上反复提到的“书让学生读、结论让学生发现、方法让学生归纳”以学生为主体的教学观;第三是有突破,我们很多老师在尝试高效课堂模式的时候,注重形式化的东西较多,较少体会高效课堂的实质。本节课上毕老师至少在以下两个方面上有所突破,一是预习方法的现场指导,比如要求学生阅读是画记号,小组合作时强调小组长要发挥作用等等,体现了学法指导。而不是让学生自己预习阅读,老师不管不问。二是在教具的制作和演示上匠心独具,特别是用两根铁丝演示等弧的问题,形象直观,便于学生理解。同时学生表现的状态很好,注意力高度集中,我感到这是本节课学生精力流失率最低的环节之一。
当然,从我个人的理解上,也有几个问题提出来和老师们一同商讨。一个是导学案中,新课设计要不要例题的问题,目前我们学校在编写导学案时,一般设计五个环节:复习回顾(或情境引入)-新知探究(预习思考)-拓展应用(合作探究)-巩固练习(反馈矫正)-小结测评(当堂检测)。其中拓展应用环节就是设计两到三个例题,以此体现本节知识的核心应用。处理方式还是先让学生自主探究,再组内交流,最后集中展示(大展示),学生讲解点评。最后教师引导归纳基本方法和解题技巧。本节课我觉得把点P到圆O上各点的距离中,最长的是8,最短的是2,求圆O的半径或直径作为例题教学是不是好一些。第二个是关于圆的集合的定义,在处理时有点快,虽不是本节重点,但是一个难点,学生不易理解,原来导学案中设计有画图,结果教学时好像没有见到,如果能让学生亲自画图观察,在圆上取点,测量该点到圆心的距离或以圆心为端点画长度等于半径的点段,然后进行观察分析就会轻松得到,到定点的距离等于定长的点都在什么什么圆上,圆上各点到定点的距离都等于圆的半径,并由此归纳出圆的集合定义。
第二节石花四中冷老师的课,讲的是垂径定理。导学案的整体设计上没什么大问题,只是“知二推三”的拓展似乎超过课标要求。“知二求三”才是本节核心。另外推论得出上的设计过于简略,导致学生在此处卡壳。如果能细化一点,就可解决这个问题。比如画一条弦CD,取CD的中点M,连接OM,求证:OM⊥CD,如果延长OM、MO分别交圆O于A、B两点,有哪些相等的弧?由此你能发现什么结论吗?其次是具备了高效课堂的某些形式,比如学生自学预习、小组合作讨论等,但不是很深入、不是很细致。整体感觉还是老师讲的多,不过冷老师是老教师,我们同龄,思想和行为转变起来确实很困难,不要心急,只要敢于尝试,大胆放手、相信学生,我们就会在高效课堂的路上走得更好。垂直于弦的直径教师教学用书上建议安排一个课时,实际上,应该是两个课时的内容,有必要附加一节习题课。
第三节是王老师的旋转试卷讲评课。我也以“三有”为关键词谈谈自己的学习体会。即有创新、有实效、有准备。有创新是指这种试卷讲评的模式让人耳目一新,原来肖主任主持的教研会上也对试卷讲评课做过研讨,而王老师的这节课在糅合高效课堂理念上,有创新。比如先让学生围绕要求自己组内改正,自我纠正、查找错因、组内合作这些有利于学生学习的方式值得学习效仿。有实效,主要体现在错因剖析、变式练习上,从我自己的角度看,我也想这么做,但从来没试过。因为很多学生并不清楚自己错在哪里,让他说,要么说忘记了不知道,要么半天说不到正点,所以每次试卷讲评效果不佳,错了的以后仍然会错。而王老师的这种方法,我觉得真正把原因弄清楚了也算是把问题真正弄明白了。其次是学生疑难点的变式练习,借助多媒体课件增大课堂容量的同时,一方面反馈改正效果,一方面进行有益的拓展延伸,增大思维含量,效果非常好。上好试卷讲评课的关键是教师课前的准备,教师通过批阅试卷必须收集掌握第一手材料,然后备课、制作课件。本节课王老师准备充分,特别是课件制作上,能在第二、三活动前。出示活动要求,方便学生明白做什么,怎么做?需要商榷的是王老师对第17题的讲解似乎不很到位,虽然有学生回答了旋转中心的坐标是(5,2),也说了自己的思路。但不科学,王老师也沿用了这种方法。我个人觉得根据旋转的性质确定旋转中心是先找两对对应点,接着分别作两对应点连线的垂直平分线,最后两中垂线的交点才是旋转中心。其中在网格中的技巧是尽量找是“正方形”顶点的对应点,这样容易看出垂直平分线的位置。
当然对于部分是教师讲的,比如第16题和第20题的变式,我个人是赞赏的,高效课堂并不是不要老师讲,学生普遍感到困难的,老师讲效果并不差,怕就怕老师一讲到底,搞一言堂。新课标中,也提到除接受学习外,动手实践、自主探索与合作交流也是学习数学的重要方式。可见,高效课堂并不排斥接受学习。
总之,三节课反映了老师对高效课堂的不同认识和理解,都值得我慢慢学习细细揣摩,从中汲取营养,改善自己的教学。再一次谢谢大家。
数学评课稿 篇3同课异构是一种新的教研方式,充分发挥了我们教师的创新才能,使课堂教学别开生面,三位老师同上《分数的初步认识》,他们不同的教学设计,不同的教学构思,不同的教学方法,使我们听课者真正感受到数学教学艺术的魅力。
我觉得三位老师对新课程理念的领会是深刻的,教学方法把握得当,营造了一个宽松、和谐的学习氛围,体现了“以学生为主体的教学思想。”主要体现在以下几点:
尊重学生的知识体验,找准学生新知的“最近发展区”。
分数对于学生来说是全新的,如何将这一全新的知识内化为学生自身的知识,找准学生学习的“最近发展区”是重要的,它是促使学生从“实际发展水平”向“潜在发展水平”的桥梁,学生的思维从已知世界自然而然滑向未知领域。数学学习是学生在已有知识经验基础上的一种自主建构过程。教学时,三位老师都注重从学生的这一数学现实出发,从学生熟悉的“一半”入手,明确一半是怎么分的,从而引入用一个新的数来表示所有事物的“一半”。创设具体情境,以此激发学生的知识体验,促进他们有效地开展建构活动。
挖掘生活素材,巧妙整合课程资源。
新课程实施的一个突出变化,就是教材不再是教学的唯一依据,不再占据绝对的主导地位,而是提倡教师依据自己所追求的,想要达到的目标,以及学生的实际情况,对教材内容进行选择、组合、再造,创造性地使用教材,体现的是用教材,而不是拘泥于教材。如三位老师都有把生活中的“汽车标志”、“国旗”“巧克力”和一些生活中的图片等搬入认识分数的课堂,可以说这些都是生活中的一些“细枝末节”,放置在纷繁复杂的社会场景中简直不值得一提,但我们惊喜地发现,正是这些微不足道的生活事物,成为学生应用数学知识、感悟数学价值的有效载体。学生从这些生活画面中,不仅联想到了“ ”“ ”等分数,更重要的是结合具体表象辩证地体会到了其中的数学算理。这样的设计更贴近生活,而且将知识化静为动,让学生感受到数学就在身边,生活之中处处有数学,在“生活”与“数学”的一拍即合之下,才生成了如此经典的课堂。
注重开展自主学习,提供充分的探索空间。
《数学课程标准》指出:“要让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程”。三位老师摒弃了“师生问答”的传统教学模式,组织、引导、放手让学生动手操作,让学生折一折,画一画,说一说,并让学生上台展示。尊重了学生的意见,发扬了学生的个性,给学生提供了一个展示自我的平台,学生通过操作、观察,找到了解决问题的方法,活跃了学生的思维,实现了由单一被动式接受学习向自主探究式学习的转变,从而培养了学生的探索精神,解决问题的能力,又充分调动了学生群体的积极性。
当然,每一节课都很难做到“踏雪无痕”,多多少少会留下一些遗憾。我有几个观点,纯属“一家之言”,现提出来与各位共同商榷。
张老师的设计可谓是大胆、开放,给了我们对分数初步认识教学方法上的一种全新的感受,真的是很震撼。但是我觉得本节课的重点、难点是“理解几分之一的意义”,张老师在此内容的传授中过急,没有让学生充分地去体会和表述几分之一的意义,重难点没有突破。
周老师自己个人的各方面素质都非常不错,不管是语言的表述还是板书的书写都显得那么干脆、漂亮,很让人羡慕!但是毕竟这是借的班级,学生跟不上你的的语速,跟不上你的思维,在这种情况下能稍放慢一些,提出问题后不要急着让学生回答,等一等可能会有更好的效果。
在李老师的课堂上充分表现出李老师对数学语言表述的重视,整节课下来,基本上学生都能准确的表述几分之一的意义,知识目标落实的比较到位。但是李老师自己的语言还不够准确、精炼,在课堂上出现了一些失误。
以上仅是我个人的一些粗浅看法,还请各位同仁指正批评。
数学评课稿 篇4一提到数学这个词,大家都觉得只是“题”是“数字”,学生学数学只要做题就行了。而在使用新教材的过程中,我逐步体会到了,数学它本身不只是“数字符号”,它有更丰富的内涵,它与人的生活息息相关。数学是对现实世界的一种思考、描述、刻画、解释、理解,其目的是发现现实世界中所蕴藏的一些数与形的规律,为社会的进步与人类的发展服务。
1、教学设计好,教学流程清楚,环节紧凑、流畅,由易到难,层次分明,知识梳理清晰,既有对集体备课形成的教学案的使用吸收,又有个人的创新、独到之处,注重了基本数学方法的培养与基本数学思想的渗透,从待定系数法到数形结合思想、分类讨论的思想,从一般到特殊的思考方法,让学生从整体、系统的角度领悟复习要求,从整体上处理教材复习内容,从系统上把握复习要求,整个设计把教学过程变成学生对知识的回顾过程,变成了学生自己探索提升的过程,让学生的能力得到了提高。
2、教学定位非常准。一是从教学设计上看,仅课前热身环节的7个小题,就涉及到本节内容九个考点的五个考点、七个不同的考查形式,复习了待定系数法,运用了数形结合思想,有效的唤醒了学生的记忆;二是通过例题的教学,进一步夯实了双基,明确了各知识点的能力要求,熟练了通性通法,再加上各例解决后的总结,让学生的思维品质有了提升;三是每个例题后的拓展补充题,不仅加强了学生对所复习的知识运用、对常用解题方法的深刻理解,而且更让学生解决问题的能力有了提高,大家都知道上好复习课,选题是关键。一节课下来我们可以感受到,徐老师这节课的题选的非常的好,特别是从例2的的第三小问的补充,由学生交流讨论后给出的三种解决方法都可以看出:教师的教学设计都落在学生学习能力和思维能力的最近发展区。
3、徐老师虽是年青教师,但上课不慌不忙,教态自然,表现非常老成;上课语言语调好,板书清楚有条理,个人基本功非常扎实;上课能与学生的有效沟通,虽说上这节复习课时间紧,复习内容和知识点多,但她上课舍得把时间给学生去板演作图过敏、去交流思考思路、去讲解解决问题过程;她不仅自己板书示范,还让学生板书解题过程,徐老师充分放手让学生自己动手,动口,老师只引导点拨,使学生主动获取知识,在潜移默化中领悟知识,使学生完全成为课堂主人,达到知识学习与能力培养的统一,说明她善于启发调动学生学习的主动性,有较强的驾驭课堂的能力。
这节课也让我们感受到徐老师鲜明的教学风格,每一道题呈现出来之后都让学生经历观察、思考、交流、探讨的过程,最后教师点评,她及时简单中肯定的评价,给予了学生莫大的鼓励,较好的发挥了教师的主导作用,这也是复习课应该达到的目标。
我的两点思考:
1、本节课让学生经历知识的回顾、归纳、运用、构建知识网络的过程。理解一次函数的代数与几何意义,体会b,k对一次函数图像的影响,体会数形之间的相互转化,了解一次方程、一次不等式与一次函数的内在联系,并能在具体的问题中运用解决问题。同时,渗透多种数学思想方法,通过这节课的复习,起到了把旧的知识、遗忘的知识重新建立起来,把没有掌握的知识补上来,使新的意义确立和巩固,从而在全面了解的基础上开始学习,更加深化新学的知识内容,达到经过多次反复,逐步提高认识的层次。特别是让学生议、说、画、写,把课堂还给了学生,改变了复习课变成习题课、复习课成了题目评讲课的现状,值得借鉴。
2、本节课是一次函数的第一节复习课,应以教材知识梳理、考点知识回顾为主,以基本题开型和基本方法熟练为抓手,徐老师这节课已对一次函数常见9个考点的六个考点进行了复习,内容丰富,稍感不足的是一次函数与方程(组)、一次函数与不等式这一重要考点用力不够,是否可以把横向综合性比较强、能力要求比较高的例2放在下节课,再在本节复习重点“三个一次”上纵向再深入点、多花点时间呢?