七年级上册数学《几何图形》精品教案

2025-01-12下载文档一键复制全文

七年级上册数学《几何图形》精品教案(精选23篇)

七年级上册数学《几何图形》精品教案 篇1

  第一课时

  平面图形的认识

  教学目标:通过复习使同学进一步理解角、垂直与平行、三角形和四边形的概念,掌握它们的特征和性质,以和各图形的联系。‘

  教学过程:

  直线、射线、线段。

  提问:1)分别说一说什么叫直线、射线、线段?

  直线、射线和线段有什么区别?

  完成123页上面的“做一做”。(同学笔做)

  角

  提问:1)什么叫做角?

  2)角的大小与什么有关?

  整理:把表中的空格填写完整。

  完成123页下面“做一做”的1题、2题。

  锐角

  直角

  钝角

  平角

  周角

  大于0°

  小于90°

  垂直与平行

  提问:

  1)在同一平面内,两条直线的相互位置有哪几种情况?

  2)什么样的两条直线叫做互相垂直?

  什么样的两条直线叫做互相平行?

  回答:下面几组直线中,哪组的两条直线互相垂直?哪组的两条直线互相平

  完成教材124页的“做一做”

  三角形。

  提问:

  1)什么叫做三角形?

  2)在下面的三角形中,顶点A的对边是指哪一条边?

  先笔做:以顶点A的对边为底,画出三角形的高,并标出底和高。(前页一幅图)

  在下面的表中填写三角形的名称和各自的特征。

  名称

  图形

  特征

  回答:锐角三角形、直角三角形、钝角三角形的联系与区别。

  四边形

  提问:什么叫四边形?

  回答:看图说出下面各图的特点,再说一说图中各字母表示什么

  想一想:为什么说长方形、正方形都是特殊的平行四边形?为什么说正方形是特殊的长方形?

  完成125页“做一做”中的1、2题。

七年级上册数学《几何图形》精品教案 篇2

  教学目标

  1.知识与技能

  (1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;

  (2)能把一些立体图形的问题,转化为平面图形进行研究和处理,•探索平面图形与立体图形之间的关系.

  2.过程与方法

  (1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力.

  (2)经历问题解决的过程,提高解决问题的能力.

  3.情感态度与价值观

  (1)积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感;

  (2)倡导自主学习和小组合作精神,在独立思考的基础上,•能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性.

  重、难点与关键

  1.重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点.

  2.难点:立体图形与平面图形之间的转化是难点.

  3.关键:从现实情境出发,通过动手操作进行实验,•结合小组交流学习是关键.

  教具准备

  长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个)教学挂图

  教学过程

  一、引入新课

  1.打开课本,看第117页城市的现代化建筑,学生认真观看.

  2.提出问题:有哪些是我们熟悉的几何图形?

  二、新授

  1.学生在回顾刚才所看的图后,充分发表自己的意见,并通过小组交流,补充自己的意见,积累小组活动经验.

  2.指定一名学生回答问题,并能正确说出这些几何图形的名称. 学生回答:有圆柱、长方体、正方体等等.

  教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征.

  3.立体图形的概念.

  (1)长方体、正方体、球、圆柱、圆锥等都是立体图形.

  (2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)

  (3)用教学挂图展示图4.1-4

  (4)提出问题:在挂图中中,包含哪些简单的平面图形?

  (5)探索解决问题的方法.

  ①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.

  ②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.

  4.平面图形的概念.

  长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形. 注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形.

  5.立体图形和平面图形的转化.

  (1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,•让学生从不同方向看.

  (2)提出问题.

  从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?

  (3)探索解决问题的方法.

  ①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.

  ②进行小组交流,评价各自获得的结论,得出正确结论. ③指定三名学生,板书画出的图形.

  6.思考并动手操作.

七年级上册数学《几何图形》精品教案 篇3

  1、内容结构分析

  《九年义务教育课程标准实验教科书·数学》七年级上册第四章是“几何图形初步”.这一章是义务教育第三学段“空间与图形”领域的起始章,在这一章,将在前面两个学段学习的“空间与图形”内容的基础上,让学生进一步欣赏丰富多彩的图形世界,看到更多的立体图形与平面图形,初步了解立体图形与平面图形之间的关系,并通过线段和角认识一些简单的图形,并能初步进行应用.

  2、教学重点与难点:

  教学重点:

  ⑴ 数学与我们的成长密切相关;

  ⑵ 数学伴随着人类的进步与发展,人类离不开数学;

  ⑶人人都能学会数学,激发学生学习数学的兴趣;

  ⑷将实际问题转化为数学问题;

  ⑸积极参与数学学习活动,体验数学活动充满着探索与创造,感受数学的严谨性及数学规律的准确性.

  教学难点:

  ⑴体会数学与我们的成长密切相关;

  ⑵学生剪图拼图的具体操作;

  ⑶尝试发现,提出并解决数学问题,体会与人合作交流的重要性.

  3、教学目标:

  ⑴知识与技能:

  直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;进行线段的简单计算,正确区分线段、射线、直线.掌握角的基本概念,进行相关运算;巩固对角得度量及运算知识的掌握,能解决一些实际问题.

  ⑵过程与方法:

  通过对本章的学习,学会在具体的2情境中,抽象概括出数学原理;学会在解决问题的过程中,进行合理的想象,进行简单的、有条理的思考;通过小组合作、动手操作、实验验证的方法解决数学问题.

  ⑶情感、态度与价值观:

  在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.

  4、课时分配

  4.1几何图形 4课时

  4.2直线、射线、线段 3课时

  4.3角 2课时

  4.4课题学习 2课时

  小结 3课时

  单元测试与评讲 3课时

七年级上册数学《几何图形》精品教案 篇4

  第1课时 认识立体图形与平面图形

  教学目标

  1.可以从简单实物的外形中抽象出几何图形,并了解立体图形与平面图形的区别;

  2.会判断一个几何图形是立体图形还是平面图形,能准确识别棱柱与棱锥.

  教学过程

  一、情境导入

  观察实物及欣赏图片:

  我们生活在一个图形的世界中,图形世界是多姿多彩的.其中蕴含着大量的几何图形.本节我们就来研究图形问题.

  二、合作探究

  探究点一:立体图形

  【类型一】 从实物图中抽象立体图形的认识

  例1 观察下列实物模型,其形状是圆柱体的是(  )

  解析:圆柱的上下底面都是圆,所以正确的是D.

  方法总结:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.

  【类型二】 立体图形的名称与分类

  例2 如图所示为8个立体图形.

  其中,是柱体的序号为________,是锥体的序号为________,是球的序号为________.

  解析:分别根据柱体,锥体,球体的定义可得结论,柱体为①②⑤⑦⑧,锥体为④⑥,球为③,故填①②⑤⑦⑧;④⑥;③.

  方法总结:正确理解立体图形的定义是解题的关键.

  探究点二:平面图形的认识

  【类型一】 平面图形的识别

  例3 有下列图形,①三角形,②长方形,③平行四边形,④立方体,⑤圆锥,⑥圆柱,⑦圆,⑧球体,其中平面图形的个数为(  )

  A.5个 B.4个

  C.3个 D.2个

  解析:根据平面图形的定义:一个图形的各部分都在同一个平面内可判断①②③⑦是平面图形.故选B.

  方法总结:区分平面图形要记住平面图形的特征,即一个图形的各部分都在同一个平面内.

  【类型二】 由平面图形组成的图形

  例4 如图所示,各标志的图形主要由哪些简单的平面图形组成?

  解:(1)由5个图形组成;

  (2)由2个正方形和1个长方形组成;

  (3)由3个四边形组成.

  方法总结:解决这类问题的关键是正确区分图形的形状和名称.

  三、板书设计

  1.立体图形

  特征:几何图形的各部分不都在同一平面内.

  2.平面图形

  特征:几何图形的各部分都在同一平面内.

  教学反思

  本节利用课件展示图片,联系生活实际,激发学习兴趣,调动学生的积极性.使学生以最佳状态投入到学习中去.通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识.使学生在讨论交流的基础上总结出立体图形和平面图形的特征.

  第2课时 从不同的方向看立体图形和立体图形的展开图

  教学目标

  1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果;

  2.能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,了解直棱柱、圆柱、圆锥的展开图或根据展开图判断立体图形.(重点,难点)

  教学过程

  一、情境导入

  《题西林壁》

  苏东坡

  横看成岭侧成峰,远近高低各不同.

  不识庐山真面目,只缘身在此山中.

  诗中描绘出诗人面对庐山看到的两幅不同的画面,你能用简洁的图形把它们形象的勾勒出来吗?

  二、合作探究

  探究点一:从不同的方向观察立体图形

  【类型一】 判断从不同的方向看到的图形

  例1 沿圆柱体上底面直径截去一部分后的物体如图所示,它从上面看到的图形是(  )

  解析:从上面看依然可得到两个半圆的组合图形.故选D.

  方法总结:本题考查了从不同的方向观察物体.在解题时要注意,看不见的线画成虚线,看得见的线画成实线.

  【类型二】 画从不同的方向看到的图形

  例2 如图所示,由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.

  解析:从正面看所得到的图形,从左往右有三列,分别有1,1,2个小正方形;从左面看所得到的图形,从左往右有两列,分别有2,1个小正方形;从上面看所得到的图形,从左往右有三列,分别有2,1,1个小正方形.

  解:如图所示:

  方法总结:画出从不同的方向看物体的形状的方法:首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.在画三种视图时,从正面、上面看到的图形要长对正,从正面、左面看到的图形要高平齐,从上面、左面看到的图形要宽相等.

七年级上册数学《几何图形》精品教案 篇5

  教学目标:

  知识与技能:

  认识常见的几何图形,并能用自己的语言描述常见几何图形的特征

  过程与方法:

  1.经历从现实世界中抽象几何图形的过程,通过对比,概括出几何研究的对象

  2.在实物与几何图形之间建立对应关系,在复习小学学过的平面图形的基础上,建立几何图形的概念,发展空间观念

  情感态度价值观:

  体验数学学习的乐趣,提高数学应用意识。

  教学重点:

  通过观察,讨论,思考和实践等活动,让学生会辨识几何体

  教学难点:

  从具体实物中抽象出几何体的概念

  教学方法:

  探究式

  教学用具:

  几何模型、实物、多媒体

  教学过程设计:

  一、观察与思考

  师:1.呈现生活中的一些物体:水杯、书、铅笔、笔筒、乒乓球、苹果、跳棋、冰激凌筒。2.由老师课前准备或当堂演示一些图片

  提问:这些物体中哪些形状类似但大小不一样?

  学生积极思考,踊跃发言。

  引导学生简述自己的理由,用自己的语言描述这些几何体的特征

  师:大家在分类的时候有没有考虑他们的颜色、材料、质量?

  生:没有

  师:我们的生活中有类似形状的许多物体,而对于这些物体如果不考虑他们的颜色、材料、质量,而只注意它们的形状、大小和位置,就得到我们今后要学习的几何图形。

  找出你所认识的几何图形

  生:圆锥、圆柱、球

  师:下面让我们一起来认识它们,(电脑显示上面各物体抽象出来的几何体)配注各几何体名称(中、英文)。请同学们观察,刚才的物体分别类似于屏幕上的哪一种几何体?

  圆柱、圆锥、正方、长方体、棱柱、球

  circular、cylinder、circular、cone、cube、cuboid、prism、sphere

  生:思考,并作出回答

  师:让我们一起来回想一下平时的日常生活中所见到过的哪些物体的形状类似于以上的几何体,(在实物与几何体模型之间建立对应关系)。

  二、做一做

  师:将书上P3的图打到屏幕上,同学们一起做,巩固概念

  三、一起探究

  1.电脑演示七种几何体,同学们说出它们的名称

  2.思考,在上述几何体中,有哪些是我们学过的平面图形?

  学生思考一段时间后,同桌交流,将部分几何体拆分,以达到让学生认识几何图形与平面图形的区别的目的。

  进一步让学生思考:

  (1)立体图形和平面图形的区别是什么?

  (2)几何图形分几部分?

  四、小结

  同学们说说这节课的收获是什么?

  收获:(1)初步认识了几何图形,有立体图形和平面图形。

  (2)立体图形的分类

  小编为大家提供的七年级上册数学几何图形教学计划表大家仔细阅读了吗?最后祝同学们学习进步。

七年级上册数学《几何图形》精品教案 篇6

  教材分析:

  《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。这为过渡到本节的学习起着铺垫作用。合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。因而,解方程是初中数学中必须要掌握的重点内容。

  设计思路:

  《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。其基本程序设计为:

  复习回顾、设问题导入 探索规律、形成解法 例题讲解、熟练运算

  巩固练习、内化升华 回顾反思、进行小结 达标测试、反馈情况

  作业布置、反馈情况。

  教学目标:

  1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

  2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。

  3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。

  教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。

  教学难点:分析实际问题中的相等关系,列出方程。

  教学方法:先学后教,当堂训练。

  教学准备:多媒体课件等。

  预习要求:要求学生自学教材第88——89页的课文内容。然后根据自己的理解分析问题2及例2;并试着进行尝试练习。找出自学中存在的问题,以便课堂学习中解决。

  教学过程:

  一、准备阶段:

  1、知识回顾:

  (1)、用合并同类项的方法解一元一次方程的步骤是什么?

  (2)、解下列方程:

  ① -3·-2·=10 ②

  2、创设问题情境,导入新课。

  问题:

  把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?

  如何解决这个问题呢?

  二、导学阶段:

  (一)、出示本节课的学习目标:

  1、通过分析实际问题中的数量关系,建立用方程解决问题的建模思想和方法;

  2、掌握移项方法,学会解“a·+b=c·+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

  (二)、合作交流,探究新知

  1、分析解决课前提出的问题。

  问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?

  分析: 设这个班有·名学生.

  每人分3本,共分出___本,加上剩余的20本,这批书共____________本.

  每人分4本,需要______本,减去缺的25本,这批书共____________本.

  这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?

  这批书的总数是一个定值,表示它的两个式子应相等,

  即表示同一个量的两个不同的式子相等.

  根据这一相等关系列得方程:

  方程的两边都有含·的项(3·和4·)和不含字母的常数项(20与-25),怎样才能使它向 ·=a(常数)的形式转化呢?

  方法过程:

  2、总结移项的概念。

  像上面这样把等式一边的某项变号后移到另一边,叫做 “移项” .

  3、思考:上面解方程中“移项”起到了什么作用?

  4、例题学习

  运用移项的方法解下列方程:

  三、课堂练习:

  运用移项的方法解下列方程:

  四、课堂小结:

  本节课,我们学习了哪些知识?你还有哪些困惑?

  五、达标测试:

  运用移项的方法解下列方程:(25′×4=100′)

  六、预习作业:

  1、预习作业:自学课本第90页的课文内容及例4,完成第90页练习2题;

  2、课后作业:(1)

七年级上册数学《几何图形》精品教案 篇7

  一、学情介绍

  我本学期担任初一七、八班的数学教学工作。初一(八)班共有学生55人,初一(七)班有学生56人。根据小学升初中考试的情况来分析学生的数学成绩不算理想,总体的水平一般,往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,因此要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。初一学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,初一学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应初一教学的新要求,要重视对学生进行记法指导。本学期的工作重点是扭转学生的学习态度,培养学生的好的学习习惯、创新意识,激发学生学习数学的热情和兴趣,培优补差,同时强调对数学知识的灵活运用,反对死记硬背,以推动数学教学中学生素质的培养。

  二、教学措施

  1、根据今年学校及教科室计划,认真构建“双思三环六步”课堂教学模式,努力提高课堂教学的有效性和实效性。双思”是指教师反思教学、学生反思学习;“三环”就是定向、内化、发展;“六步”分别是指:提供资源(入境生趣)、了解学情(自学生疑)、弄清疑难(学习释疑)、点难拨疑(练习解难)、反思教学(反思学习)、引导实践(迁移创新)。我们要在反思中成长,学生要在反思中进步;我们要反思的主要内容是怎样优化“三环六步”教学设计,不断提高课堂教学效率;学生要反思的主要内容学习积极性、学习策略和学习方法运用是否得当、不断提高学习效率。

  初一学生刚刚进入初中阶段,正是从小学过度到初中学习的重要阶段,也是进行“双思三环六步”课堂教学模式的时期,要逐步的培养和完善这种模式,要求我们多研究、多思考、多创新、多探究。按照“低(起点)慢(速度)多(落点)高(标准)”元素结构教学法进行教学,“低起点”考虑到学生的基础,初一学生从小学数学到初中数学的学习是一个飞跃,怎样帮助学生慢慢过渡是一个难点,从细小的问题、每一个小知识点出发结合小学知识融汇到初中的知识中去,从而使学生很快接受知识。“慢速度”反对快速度教学,主张教学要考虑学生的学习规律和接受程度,兼顾初一学生的生理、心理、知识、能力、意志、品德等特征和差异,步步为营,梯次推进,使学生有效地掌握知识和培养能力。“多落点”强调教育要考虑到初一学生个性差异的特点。个性差异是表现在多方面,不仅有年龄、性别、性格、身体的差异,还有很多学习上的差异,个人思维方式、生活方式的差异。推动不同层次的学生都有收获。“高标准”为学生确立的学习标准。而且把目标细化,使学生能很快达到,既能掌握知识又能体会到成功的愉悦,使初一的学生对数学充满兴趣,从而达到高效课堂的标准。

  2、精心设计习题,使习题从简单到复杂形成梯度,引导学生学会发散思维,培养学生创造性思维的能力,实现一题多解、举一反三、触类旁通,培养思维的灵活性。

  3、批改作业做到全批全改,从过程到步骤严格要求,发现问题及时解决作认好总结,从初一使学生慢慢养成认真按步骤做作业的习惯。

  4、继续实行课前一题的模式。课前五分钟每个班的课代表把上一节课涉及到的典型题目呈现在黑板上,学生在解题的过程中复习上一节的内容,而且也能做到尽快把学生从课间拉回到上课的的状态,并力求把学生中新方法新思维挖掘出来。

  5、实行一对一的帮扶活动,由好学生带动一个差一点的学生,从知识、作业、学习习惯等各方面互帮互助,从而全面提高学生的综合素质。

  三、合理落实各项教学常规

  1、备好课是上好课的基础,是提高课堂教学质量的关键。根据“双思三环六步”课堂教学模式,所以在备课时深入钻研教材,正确地掌握和处理好教材的重点、难点,准备大量的、难度不同的习题备用,备课以个人独立钻研备课为主,在此基础上进行集体备课,广泛吸取其他老师的优点和精华,完善自己的备课达到精益求精。

  2、上课时要严格按照“双思三环六步”课堂教学模式的步骤进行教学,讲课时要围绕中心内容,突出重点,突破难点。整个教学过程要严密组织,使课堂教学既层次分明,又协调紧凑。教学时要面向全体学生,使各类学生都学有所得。特别是要照顾到差生,力求使他们能掌握本课时的基本知识和技能。

七年级上册数学《几何图形》精品教案 篇8

  一、教材分析:

  1、教材所处的地位和作用:

  从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展,从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础.教科书将本节内容安排在第一节,一方面是对小学学段已经学过的有关算术方法解题和简单方程的运用的进一步发展,另一方面考虑引入一元一次方程后,可以尽早渗透模型化的思想,使学生尽早接触利用一元一次方程解决实际问题的方法.

  《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程的概念,根据相等关系列出方程.让学生在归纳和总结的过程中,初步建立数学模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验.

  2、教学目标:

  根据课标的要求和本节内容的特点,我从知识技能、数学思考、情感价值观三个方面确定本节课的目标:

  知识技能目标

  ①通过对实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用.

  ②在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.

  ③使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.

  数学思考目标

  用字母表示未知数,找出相等关系,将实际问题抽象为数学问题,通过列方程解决.

  情感价值目标:

  让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情.

  3、重点、难点:

  结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定了本节课的教学重难点.

  教学重点:知道什么是方程、一元一次方程,找相等关系列方程.

  教学难点:思维习惯的转变,分析数量关系,找相等关系。

  二、教学策略:

  如何突出重点,突破难点,从而达到教学目标的实现呢?在教学过程我运用了如下教法与手段:

  1.生活引路,感知概念背景;

  2.比较方法,明确意义;

  3.感受过程,形成核心概念;

  4.运用新知,巩固方法;

  5.归纳总结,巩固发展.

  本节课利用多媒体教学平台,从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型.采用教师引导,学生自主探索、观察、归纳的教学方式。

  三、学情分析:

  根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法.通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力.

  四、教学过程:

  本节课的教学过程我设计了以下六个环节:

  (一) 情景引入

  采用教材中的情景

  在这个环节中我提出了三个问题:

  问题1:从上图中你能获得哪些信息?

  问题2:你会用算术方法求吗?

  问题3:你会用方程的方法解决这个问题吗?

  (二)学习新知

  在这个环节中,我首先提出一个问题:“如果设中山市到深圳市的路程为·千米,怎样用式子表示中山市与东莞市的距离以及中山市与惠州市的距离?”,这样,学生就会主动结合图形,根据在《整式的加减》中学到的知识解决问题.

  通过上述思考过程,学生已经初步了解到寻找已知量与未知量之间存在的相等关系是利用方程解决实际问题的关键所在.

  然后我结合上面的过程简单归纳列方程解决实际问题的步骤并给出方程的概念.

  解决实际问题的步骤:(1)用字母表示问题中的未知数;(2)根据问题中的相等关系,列出方程.(17世纪的法国数学家迪卡尔最早使用·,y,z等字母表示未知数,而我国古代则用“天元、地元、人元、物元”等表示未知数,而且要比西方早1000多年,这说明我们中华民族是一个充满智慧和才干的伟大民族.)

  在这里我介绍了字母表示未知数的文化背景,其目的就是在文化层面上让学生进一步理解数学、喜爱数学,展示数学的文化魅力,这正是培养学生情感价值观的体现.

  方程的概念:含有未知数的等式叫方程.小学里已经给出了方程的概念,这里可适当处理.

  在这里我开始向学生渗透列方程解决实际问题的思考程序.

  (三)讨论交流

  讨论1:比较列算式和列方程两种方法的特点.

  列算式:只用已知数,表示计算程序,依据是间题中的数量关系;

  列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

  通过讨论,学生体会到了:用算术方法解题时,列出的算式只能用已知数,而列方程时,方程中既含有已知数,又含有用字母表示的未知数,这就是说,在方程中未知数(字母)可以和已知数一起表示问题中的数量关系.

  而且随着学习的深入,学生会逐步体会到从算式到方程是数学的进步。

  紧接着的思考让全班学生参与学习的过程,从而进一步地拓宽了学生的思维.

  讨论2:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?

  在这个讨论活动中,我采取了先小组合作交流后全班交流.

  通过交流后,学生中出现如下结果:

  从学生的分析所得,这两种设未知数的方法就是在以后学习中将遇到的直接设元和间接设元两种设元.

  要求出路程,只要解出方程中的·即可,我们在以后几节课中再来学习.

  在这个环节里,问题的开放有利于培养学生的发散思维。这样安排的目的是使所有的学生都有独立思考的时间和合作交流的时间。

  (四)初步应用

  学生在小学已经学过简易方程,通过以下的例题和练习可以回顾已经学过的知识,并为一元一次方程提供素材。

  1、例题:根据下列问题,设未知数并列出方程:

  (1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?

  (2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

  (3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?

  2、课堂练习:这一组例题和课堂练习的设置,其目的是让学生更进一步加强列方程解决实际问题的能力。

  (五)再探新知

  提取例题和练习中出现的方程请学生观察方程它们有什么共同的特点?然后达成共识:只含有一个未知数;未知数的次数是1.

  在这个环节中,我引导学生观察方程特点,给出一元一次方程的概念

  教师总结:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程.

  思考:下列式子中,哪些是一元一次方程?通过思考辨析,使学生巩固一元一次方程的概念,把握住概念的本质.

  (六)课堂小结

  让学生先归纳,然后教师补充方式进行,主要围绕以下问题:

  本节课学习了哪些主要内容?一元一次方程的三个特征是什么?从实际问题中列出方程的步骤及关键是什么?

  五、课堂设计理念

  本节课着力体现以下几个方面:

  1、突出问题的应用意识。在各个环节的安排上都设计成一个个问题,使学生能围绕问题展开讨思考、讨论,进行学习。

  2、体现学生的主体意识。让学生通过列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作交流,得出问题的不同解法;让学生对一节课的学习内容、方法、注意点等进行归纳。

  3、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再引导学生列出含未知数的式了,寻找相等关系列出方程,在寻找相等关系、设未知数及作业的布置等环节中都注意了学生思维的层次性。

  4、渗透建模思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。

七年级上册数学《几何图形》精品教案 篇9

  【学习目标】

  1、理解什么是一元一次方程。

  2、理 解什么是方程的解及解方程,学会检验一个数值是不是方程的 解的方法。

  【重点难点】能验证一个数是否是一个方程 的解。

  【导学指导】

  一、温故知新

  1:前面学 过有关方程的一些 知识,同学们能说出什么是方程吗?

  答: 叫做方程。

  2: 判断下列是不是 方程,是打“√”,不是打“×”:

  ① ;( ) ②3+4=7;( )

  ③ ;( )④ ;( )

  ⑤ ;( ) ⑥ ;( )

  二、自主探究

  1. 一元一次方程的概念

  观察下面方程的特点

  (1)4 =24;(2)1700+150=2450

  (3)0.52`-(1-0.52`)=80

  小结:象上面方程,它们都含有 个未知数(元),未知数的次数都是 ,这样的方程叫做一元一次方程。

  (即方程的一边或两边含有未知数)

  2.方程的解

  如何求出使方程左右两边相等的未知数的值?

  如方程 =4中, =?

  方程 中的 呢?

  请用小学所学过的逆运算尝试解决上面的问题。

  解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

  例 检验2和-3是否为方程 的解。

  解:当`=2时,

  左边= = ,

  右边= = ,

  ∵左边 右边(填=或≠)

  ∴`=2 方程的解(填是或不是)

  当`= 时,

  左边= = ,

  右边= = ,

  ∵左边 右边(填=或≠)

  ∴`=3 方程的解(填是或不是)

  【课堂练习】

  1.判断下列是不是一元一次方程,是打“√”,不是打“×”:

  ① =4;( ) ② ;( )

  ③ ; ( ) ④ ; ( )

  ⑤ ; ( ) ⑥3+4 =7 ;( )

  2.检验3和-1是否为方程 的解。

  3.`=1是下列方程( )的解:

  (A) , ( B) ,

  (C) ), ( D)

  4 、已知方程 是关于`的一元一次方程,则a= 。

  【要点归纳】:

  1. 这节课我们学习了什么内容?

  2.什么是方程的解?如何检验一个数是否是方程的解?

  【拓展训练】:

  1.检验2和 是否为方程 的解。

  2.老师要求把一篇有20__字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程,并尝试求出 方程的解)

七年级上册数学《几何图形》精品教案 篇10

  【第一部分】知识点分布

  1、 一元一次方程的解(重点)

  2、 一元一次方程的应用(难点)

  3、 求解一元一次方程及其在实际问题中的应用(考点)

  【第二部分】关于一元一次方程

  一、一元一次方程

  (1)含有未知数的等式是方程。

  (2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

  (3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

  (4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

  (5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

  (6)求方程的解的过程,叫做解方程。

  二、等式的性质

  (1)用等号“=”表示相等关系的式子叫做等式。

  (2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

  如果a=b,那么a±c=b±c.

  (3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

  【第一部分】知识点分布

  1、 一元一次方程的解(重点)

  2、 一元一次方程的应用(难点)

  3、 求解一元一次方程及其在实际问题中的应用(考点)

  【第二部分】关于一元一次方程

  一、一元一次方程

  (1)含有未知数的等式是方程。

  (2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

  (3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

  (4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

  (5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

  (6)求方程的解的过程,叫做解方程。

  二、等式的性质

  (1)用等号“=”表示相等关系的式子叫做等式。

  (2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

  如果a=b,那么a±c=b±c.

  (3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

  如果a=b,那么ac=bc;

  如果a=b且c≠0,那么

  (4)运用等式的性质时要注意三点:

  ①等式两边都要参加运算,并且是作同一种运算;

  ②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;

  ③等式两边不能都除以0,即0不能作除数或分母。

  三、一元一次方程的解

  1、解一元一次方程——合并同类项与移项

  (1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。

  (2)把等式一边的某项变号后移到另一边,叫做移项。

  (3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。

  2、解一元一次方程——去括号与去分母

  (1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

  (2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

  (3)工作总量=工作效率×工作时间。

  (4)工作量=人均效率×人数×时间。

  四、实际问题与一元一次方程

  (1)售价指商品卖出去时的的实际售价。

  (2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。

  (3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。

  (4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。

  (5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;

  (6)产油量=油菜籽亩产量×含油率×种植面积。

  (7)应用:行程问题:路程=时间×速度;

  工程问题:工作总量=工作效率×时间;

  储蓄利润问题:利息=本金×利率×时间;

  本息和=本金+利息。

  (4)运用等式的性质时要注意三点:

  ①等式两边都要参加运算,并且是作同一种运算;

  ②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;

  ③等式两边不能都除以0,即0不能作除数或分母。

  三、一元一次方程的解

  1、解一元一次方程——合并同类项与移项

  (1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。

  (2)把等式一边的某项变号后移到另一边,叫做移项。

  (3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。

  2、解一元一次方程——去括号与去分母

  (1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

  (2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

  (3)工作总量=工作效率×工作时间。

  (4)工作量=人均效率×人数×时间。

  四、实际问题与一元一次方程

  (1)售价指商品卖出去时的的实际售价。

  (2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。

  (3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。

  (4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。

  (5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;

  (6)产油量=油菜籽亩产量×含油率×种植面积。

  (7)应用:行程问题:路程=时间×速度;

  工程问题:工作总量=工作效率×时间;

  储蓄利润问题:利息=本金×利率×时间;

  本息和=本金+利息。

七年级上册数学《几何图形》精品教案 篇11

  教学目的和要求:

  1.使学生了解有理数加法的意义。

  2.使学生理解有理数加法的法则,能熟练地进行有理数加法运算。

  3.培养学生分析问题、解决问题的能力,在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力。(在教学中适当渗透分类讨论思想)

  教学重点和难点:

  重点:理解有理数加法法则,运用有理数加法法则进行有理数加法运算。

  难点:理解有理数加法法则,尤其是异号两数相加的情形。

  教学工具和方法:

  工具:应用投影仪,投影片。

  方法:分层次教学,讲授、练习相结合。(采取合作探究式教学方法,让学生在合作学习中学习知识,掌握方法。)

  教学过程:

  一、复习引入:

  1.在小学里,已经学过了正整数、正分数(包括正小数)及数0的四则运算。现在引入了负数,数的范围扩充到了有理数。那么,如何进行有理数的运算呢?

  2.问题:[

  一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?

  我们知道,求两次运动的总结果,可以用加法来解答。可是上述问题不能得到确定答案,因为问题中并未指出行走方向。(大部分同学都会用小学学过的的知识来完成。先给予肯定,鼓励同学们对小学知识的掌握程度,再鼓励同学们想想还有没有其他情况)

  [来源:学#科#网]

  二、讲授新课:

  1.发现、总结(分类):

  我们必须把问题说得明确些,并规定向东为正,向西为负。

  (同号两数相加法则)

  (1)若两次都是向东走,很明显,一共向东走 了50米,写成算式就是: (+20)+(+30)=+50,

  即这位同学位于原来位置的东方50米处。这一运算在数轴上表示如图:

  (2)若两次都是向西走,则他现在位于原来位置的西方50米处,

  写成算式就是: (―20)+(―30)=―50。

  (师生共同归纳同号两数相加法则:[来源:Z+··+]

  同号两数相加,取相同的符号,并把绝对值相加)

  (异号两数相加法则)

  (3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:

  写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。

  (4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。即这位同学位于原来位置的( )方( )米处。

  后两种情形中,两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数不妨仍可看作运动的方向和路程):

  你能发现和与两个加数的符号和绝对值之间有什么关系吗?

  (+4)+(―3)=( ); (+3)+(―10)=( );

  (―5)+(+7)=( ); (―6)+ 2 = ( )。

  再看两种特殊情形:

  (5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)=( )。

  (6)第一次向西走了30米,第二次没走.写成算式是:(―30)+ 0 =( )。我们不难得出它们的结果。

  (师生共同归纳异号两数相加法则:

  绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)

  (互为相反数的两数相加为零

  问题:会不会出现和为0的情况?

  (5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)= ( )。

  师生共同归纳法则3:互为相反数的两数相加得0)

  问题:你能有法则来解释法则3吗?

  学生回答:可以用异号两数相加的法则)

  ((6)第一次向西走了30米,第二次没走.写成算式是:(―30)+0= ( )。我们不难得出它们的结果。

  一般地,一个数同0相加,仍得这个数)

  2.概括:

  综合以上情形,我们得到有理数的加法法则:

  (1) 同号两数相加,取相同的符号,并把绝对值相加;

  (2) 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

  (3) 互为相反数的两个数相加得0;

  (4)一个数同0相加,仍得这个数.

  注意:

  一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。

  3.例题:

  例:计算:

  (1)(+2)+(―11);(2)(+20)+(+12);(3);(4)(―3.4)+4.3。

  解:(1)解原式=―(11―2)=―9;

  (2)解原式=+(20+12)=+32=32;

  (3)解原式=;

  (4)解原式= +(4.3―3.4)=0.9。

  4.五分钟测试:

  计算: (1) (+3)+(+7);(2)(―10)+(―3);(3)(+6)+(―5);(4)0+(―5)。

  三、课堂小结:

  这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.

  应用有理数加法法则进行计算时,要同时注意确定“和”的符号、计算“和”的绝对值两件事。

  (运算的关键:先分类,在按法则运算

  运算步骤:先确定符号,再计算绝对值

  注意问题:要借助数轴来进一步验证有理数的加法法则)

  四、课堂作业:

  课本:P18:1,2,3。

  板书设计:

  教学后记:

  略

七年级上册数学《几何图形》精品教案 篇12

  教学目标

  1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;

  2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;

  3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;

  4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;

  5.本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

  教学建议

  (一)重点、难点分析

  本节教学的重点是依据有理数的加法法则熟练进行有理数的加法运算。难点是有理数的加法法则的理解。

  (1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。

  (2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。

  (3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。

  (二)知识结构

  (三)教法建议

  1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。

  2.有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。

  3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。

  4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。

  5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。

  6.在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。

  教学设计示例

  有理数的加法(第一课时)

  教学目的

  1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.

  2.通过有理数的加法运算,培养学生的运算能力.

  教学重点与难点

  重点:熟练应用有理数的加法法则进行加法运算.

  难点:有理数的加法法则的理解.

  教学过程

  (一)复习提问

  1.有理数是怎么分类的?

  2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?

  3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?

  -3与-2;|3|与|-3|;|-3|与0;

  -2与|+1|;-|+4|与|-3|.

  (二)引入新课

  在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算.

  (三)进行新课 有理数的加法(板书课题)

  例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?

  两次行走后距原点0为8米,应该用加法.

  为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:

  1.同号两数相加

  (1)某人向东走5米,再向东走3米,两次一共走了多少米?

  这是求两次行走的路程的和.

  5+3=8

  用数轴表示如图

  从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.

  可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.

  (2)某人向西走5米,再向西走3米,两次一共向东走了多少米?

  显然,两次一共向西走了8米

  (-5)+(-3)=-8

  用数轴表示如图

  从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.

  可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.

  总之,同号两数相加,取相同的符号,并把绝对值相加.

  例如,(-4)+(-5),……同号两数相加

  (-4)+(-5)=-( ),…取相同的符号

  4+5=9……把绝对值相加

  ∴ (-4)+(-5)=-9.

  口答练习:

  (1)举例说明算式7+9的实际意义?

  (2)(-20)+(-13)=?

  (3)

  2.异号两数相加

  (1)某人向东走5米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.

  5+(-5)=0

  可知,互为相反数的两个数相加,和为零.

  (2)某人向东走5米,再向西走3米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.

  就是 5+(-3)=2.

  (3)某人向东走3米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.

  就是 3+(-5)=-2.

  请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?

  最后归纳

  绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.

  例如(-8)+5……绝对值不相等的异号两数相加

  8>5

  (-8)+5=-( )……取绝对值较大的加数符号

  8-5=3 ……用较大的绝对值减去较小的绝对值

  ∴(-8)+5=-3.

  口答练习

  用算式表示:温度由-4℃上升7℃,达到什么温度.

  (-4)+7=3(℃)

  3.一个数和零相加

  (1)某人向东走5米,再向东走0米,两次一共向东走了多少米?

  显然,5+0=5.结果向东走了5米.

  (2)某人向西走5米,再向东走0米,两次一共向东走了多少米?

  容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.

  请同学们把(1)、(2)画出图来

  由(1),(2)得出:一个数同0相加,仍得这个数.

  总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.

  有理数加法运算的三种情况:

  特例:两个互为相反数相加;

  (3)一个数和零相加.

  每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.

  (四)例题分析

  例1 计算(-3)+(-9).

  分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

  解:(-3)+(-9)=-12.

  例2

  分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值.

  .(强调“两个较大”“一个较小”)

  解:#FormatImgID_13#

  解题时,先确定和的符号,后计算和的绝对值.

  (五)巩固练习

  1.计算(口答)

  (1)4+9;(2) 4+(-9);(3)-4+9;(4)(-4)+(-9);

  (5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;

  2.计算

  (1)5+(-22);(2)(-1.3)+(-8)

  (3)(-0.9)+1.5;(4)2.7+(-3.5)

七年级上册数学《几何图形》精品教案 篇13

  教学目标

  知识与能力:掌握去括号法则,运用法则,能按要求正确去括号.

  过程与方法:经历类比带有括号的有理数的运算,探究、发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

  情感、态度与价值观:通过参与探究活动,培养学生主动探究、合作交流的意识,严谨治学的学习态度,体会合作与交流的重要性.

  教学重难点

  重点:去括号法则,准确应用法则将整式化简.

  难点:括号前面是“-”号,去括号时括号内各项都变号.

  教学过程

  一、复习旧知

  1. 化简

  -(+5) +(+5) -(-7) +(-7)

  2. 去括号

  ① -(3- 7) ② +(3- 7)

  二、探索新知

  想一想:根据分配律,你能为下面的式子去括号吗?

  ①+(- a+c) ② - (- a+c)

  ③ +(a-b+c) ④ -(a-b+c)

  观察这两组算式,看看去括号前后,括号里各项的符号有什么变化?

  去括号法则:

  括号前是“+”号的,把括号和它前面的“+”号去掉,

  括号里各项都不改变符号;

  括号前是“ - ”号的,把括号和它前面的“ - ”号去掉,

  括号里各项都改变符号。

  顺口溜:

  去括号,看符号;是“+”号,不变号;是“-”号,全变号。

  三、巩固练习:

  (1)去括号:

  a+(b-c)= _______ a- (b-c)= ______

  a+(- b+c)= _______ a- (- b+c)= ______

  (2)判断正误

  a-(b+c)=a-b+c ( )

  a-(b-c)=a-b-c ( )

  2b+(-3a+1)=2b-3a-1 ( )

  3a-(3b-c)=3a-3b+c ( )

  四、例题学习:为下面的式子去括号

  +3(a - b+c) - 3(a - b+c)

  五、课堂检测:

  去括号:

  ① 9(x-z) ②-3(-b+c) ③ 4(-a+b-c) ④ -7(-x-y+z)

  六、课堂小结

 

The template file 'copy.htm' not found or have no access!(1)