数字电路实训心得体会_数字电路实习总结报告

2024-04-28下载文档一键复制全文

数字电路实训心得体会_数字电路实习总结报告(通用5篇)

数字电路实训心得体会_数字电路实习总结报告 篇1

  数字电路又可称为逻辑电路,通过与(&),或(>=1),非(o),异或(=1),同或(=)等门电路来实现逻辑。

  逻辑电路又可分为组合逻辑电路和时序逻辑电路。组合逻辑电路是指在某一时刻的输出状态仅仅取决于在该时刻的输入状态,而与电路过去的状态无关。

  TTL和CMOS电路:TTL是晶体管输入晶体管输出逻辑的缩写,它用的电源为5V。CMOS电路是由PMOS管和NMOS管(源极一般接地)组合而成,电源电压范围较广,从1.2V-18V都可以。

  CMOS的推挽输出:输出高电平时N管截止,P管导通;输出低电平时N管导通,P管截止。输出电阻小,因此驱动能力强。

  CMOS门的漏极开路式:去掉P管,输出端可以直接接在一起实现线与功能。如果用CMOS管直接接在一起,那么当一个输出高电平,一个输出低电平时,P管和N管同时导通,电流很大,可能烧毁管子。单一的管子导通,只是沟道的导通,电流小,如果两个管子都导通,则形成电流回路,电流大。

  输入输出高阻:在P1和N1管的漏极再加一个P2管和N2管,,当要配置成高阻时,使得P2和N2管都不导通,从而实现高阻状态。

  静态电流:输入无状态反转(高低电平变换)情况下的电流。

  动态电流:电路在逻辑状态切换过程中产生的功耗,包括瞬间导通功耗和负载电容充放电功耗两部分。门电路的上升边沿和下降边沿是不可避免的,因此在输入电压由高到低或由低变高的过程中到达Vt附近时,两管同时导通产生尖峰电流。该损耗取决于输入波形的好坏(CMOS工艺),电源电压的大小和输入信号的重复频率。电路的负载电容的充放电也是很大的一部分。

  ESD保护:Electro-Staticdischarge, 静电放电。

  输入输出缓冲器:是缓冲器,不是缓存器,就是一个CMOS门电路。输入缓冲器的作用主要是1,TTL/CMOS电平转换接口;2,过滤外部输入信号噪声。输出缓冲器的作用是增加驱动能力。

  配成输入模式不一定比输出模式更省电:输入模式时输入缓冲器会打开,而输出模式时输出缓冲器会打开。

  TESEO上GPIO数据寄存器读写的注意点:

  配置成普通GPIO时,如果配置成输出口,那么写数据寄存器会直接输出该电平,读数据寄存器实际就是读锁存器中最后一次被写入的值。如果被配置成输入口,并且上下拉使能的话,那么写数据寄存器就是配置上下拉电阻,而读数据寄存器就是读输入引脚的缓冲器,返回的是该引脚的当前电平状况。有些平台会有专门的状态寄存器,无论当前引脚被配置成输入还是输出,读该专门的状态寄存器都返回该引脚的当前电平状况。

  引脚的BOOT state是指在上电重启或硬重启时引脚的状态,reset release之后的状态为reset state,reset state和state有可能不一样。TESEO的UART0_TX为boot1,该引脚的信号在上电重启或硬重启时会被锁存,以备reset release时给default register map用。

  IO的电源电压配置:IO引脚归属于不同IOring,不同的IO ring可以被输入不同的电压。CPU在判决IO的逻辑电平时会和IO ring的电平(乘以高低电平的系数)作比较。

  数字电路中的摆幅:输入摆幅和输出摆幅。输入摆幅指的是最低输入高电平和最高输入低电平的差值,输出摆幅指的是最低输出高电平和最高输出低电平之间的差值,TTL的摆幅偏小。

  在时序逻辑电路里,如果输入的时钟停止,那么整个电路的功耗很低,原因是时序逻辑电路里的很多小单元的输出是由时钟驱动的,时钟停止,基本就是高阻态。如果将整个模块的电断了,那么就会更加省电。

  猜你感兴趣:

  串口通信电路,如果将其关掉,一般RX线上会是低电平,如果检测到高电平,就会产生中断,这个时候就可以重启开启串口,但是第一个字节由于不在串口寄存器里面,因此,数据会丢失。

数字电路实训心得体会_数字电路实习总结报告 篇2

  通过一周的电子设计,我学会了如何将书本上学到的知识应用与实践,学会了一些基本的电子电路的设计、仿真与焊接,虽然在这个过程中我遇到了很多麻烦,但是在解决这些问题的过程中我也提高了自身的专业素质,这次设计不仅增强了自己在专业方面的信心,鼓舞了自己,更是一次兴趣的培养。

  这次电子实习,我所选的课题是“倒计时光控跑马灯”,当拿到选题时,我认为这个不是很难。但当认真的考虑时,我才发现一切并非我想的那么简单。无论一个多么简单的课题,他所牵涉的知识比较多的,比如我这个选题不仅仅包括许多模电器件和数电器件,它还包含许多以前我没有接触或熟知的器件。所以我在设计时也在不断的学习,了解每一个器件的结构、工作原理及其运用。经过与搭档的多次交流,我们才确定了最后的电路方案,然后在多次的电路仿真之中,我们又进行了更加完善的修改,以达到万无一失。

  第三天的任务主要是焊接自己设计的电路板。开始,我们都充满了好奇,毕竟这是第一次走进实验室去焊接电路板。不过才过了一天,所有的好奇心都烟消云散,换而的是苦与累。我这时才知道焊电路板确实是一件苦差事。焊电路板要人非常的细心,并且要有一定的耐心,因为焊接示若稍不注意就会使电路短路或者焊错。经过一两天的坚苦奋斗,终于焊完的。但当我们去测试时却无法出现预期的结果。然后我没办法只得去慢慢检查,但也查不出个所以然来。我想实际的电路可能与仿真的电路会产生差错,毕竟仿真的是在虚拟的界面完成的。

  所以在接下来的几天我都在慢慢调试和修改中度过,想想那几天过的真的好累,在一次次的失败中修正却还是得不到正确的结果。好几次都想放弃,但最后还是坚持下来。经过多次调试,最后还是得到正确的结果,那一刻,我感觉如释重负,感觉很有成就感。 一个星期的电子实习已经过去,但是使我对电子设计有了更的了解,使我学了很多,具体如下:1. 基本掌握手工电烙铁的焊接技能够独立的完成简单电子产品的安装与焊接。熟悉电子产品装工艺的生产流程,了解电子产品的焊接、调试与维修方法;2. 熟悉了有关电子设计与仿真软件的使用,能够熟练使用普通万用表;3.熟悉常用电子器件的类别、型号、规格、性能及其使用范围,能够灵活的运用

  4.增强自己解决问题的能力,利用网上和图书馆的资源,搜索查找得到需要的信息;5.明白了团队合作的重要性,和搭档相互讨论,

  学会了怎么更好解决问题。

数字电路实训心得体会_数字电路实习总结报告 篇3

  电路实训,作为一门实实在在的实训学科,是电路知识的基础和依据。它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。在大一上学期将要结束之际,我们进行了一系列的电路实训,从简单的戴维南定理到示波器的使用,再到回转路-----,一共五个实训,通过这五个实训,我对电路实训有了更深刻的了解,体会到了电路的神奇与奥妙。

  不过说实话在做这次试验之前,我以为不会难做,就像以前做的实训一样,操作应该不会很难,做完实训之后两下子就将实训报告写完,直到做完这次电路实训时,我才知道其实并不容易做。它真的不像我想象中的那么简单,天真的以为自己把平时的理论课学好就可以很顺利的完成实训,事实证明我错了,当我走上试验台,我意识到要想以优秀的成绩完成此次所有的实训,难度很大,但我知道这个难度是与学到的知识成正比的,因此我想说,虽然我在实训的过程中遇到了不少困难,但最后的成绩还是不错的,因为我毕竟在这次实训中学到了许多在课堂上学不到的东西,终究使我在这次实训中受益匪浅。

  下面我想谈谈我在所做的实训中的心得体会:

  在基尔霍夫定律和叠加定理的验证实训中,进一步学习了基尔霍夫定律和叠加定理的应用,根据所画原理图,连接好实际电路,测量出实训数据,经计算实训结果均在误差范围内,说明该实训做的成功。我认为这两个实训的实训原理还是比较简单的,但实际操作起来并不是很简单,至少我觉得那些行行色色的导线就足以把你绕花眼,所以我想说这个实训不仅仅是对你所学知识掌握情况的考察,更是对你的耐心和眼力的一种考验。

  在戴维南定理的验证实训中,了解到对于任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替此电压源的电动势Us等于这个有源二端网络的开路电压Uoc

  ,其等效内阻Ro等于该网络中所有独立源均置零时的等效电阻。这就是戴维南定理的具体说明,我认为其实质也就是在阐述一个等效的概念,我想无论你是学习理论知识还是进行实际操作,只要抓住这个中心,我想可能你所遇到的续都问题就可以迎刃而解。不过在做这个实训,我想我们应该注意一下万用表的使用,

  尽管它的操作很简单,但如果你马虎大意也是完全有可能出错的,是你整个的实训前功尽弃!

  在接下来的常用电子仪器使用实训中,我们选择了对示波器的使用,我们通过了解示波器的原理,初步学会了示波器的使用方法。在试验中我们观察到了在不同频率、不同振幅下的各种波形,并且通过毫伏表得出了在不同情况下毫伏表的读数。

  我们最后一个实训做的是一阶动态电路的研究,在这个实训中我们需要测定RL一阶电路的零输入响应,零状态响应以及全响应,学习电路时间常数的测量方法。因为动态网络的过渡过程是十分短暂的单次变化过程,如果我们选择用普通示波器过渡过程和测量有关的参数,我们就必须是这种单次变化的过程重复出现。因此我们利用信号发生器输出的方波模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。上述是在做此实训时应注意的,因为如果不使动态网络的过渡过程单次变化重复出现,会使我们所测得的值及其不准确。同时当我们把一个电容和一个电阻串联到电路中,观察示波器中所显示的波形,如果它是周期性变化的,而且近似于镰刀形,说明对于这个一阶动态电路实训已经基本上掌握!电工实训心得体会总的来说,通过此次电路实训,我的收获真的是蛮大的,不只是学会了一些一起的使用,如毫伏表,示波器等等,更重要的是在此次实训过程中,更好的培养了我们的具体实训的能力。又因为在在实训过程中有许多实训现象,需要我们仔细的观察,并且分析现象的原因。特别有时当实训现象与我们预计的结果不相符时,就更加的需要我们仔细的思考和分析了,并且进行适当的调节。因此电路实训可以培养我们的观察能力、动手操做能力和独立思考能力。所以对于此次电路实训我觉得很成功,因为我在这次实训中真的收获到了很多从课堂上学不到的东西,真的让我感触颇深,受益匪浅!

数字电路实训心得体会_数字电路实习总结报告 篇4

  电路实验,作为一门实实在在的实验学科,是电路知识的基础和依据。它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。在大一上学期将要结束之际,我们进行了一系列的电路实验,从简单的戴维南定理到示波器的使用,再到回转路-----,一共五个实验,通过这五个实验,我对电路实验有了更深刻的了解,体会到了电路的神奇与奥妙。

  不过说实话在做这次试验之前,我以为不会难做,就像以前做的实验一样,操作应该不会很难,做完实验之后两下子就将实验报告写完,直到做完这次电路实验时,我才知道其实并不容易做。它真的不像我想象中的那么简单,天真的以为自己把平时的理论课学好就可以很顺利的完成实验,事实证明我错了,当我走上试验台,我意识到要想以优秀的成绩完成此次所有的实验,难度很大,但我知道这个难度是与学到的知识成正比的,因此我想说,虽然我在实验的过程中遇到了不少困难,但最后的成绩还是不错的,因为我毕竟在这次实验中学到了许多在课堂上学不到的东西,终究使我在这次实验中受益匪浅。

  下面我想谈谈我在所做的实验中的心得体会:

  在基尔霍夫定律和叠加定理的验证实验中,进一步学习了基尔霍夫定律和叠加定理的应用,根据所画原理图,连接好实际电路,测量出实验数据,经计算实验结果均在误差范围内,说明该实验做的成功。我认为这两个实验的实验原理还是比较简单的,但实际操作起来并不是很简单,至少我觉得那些行行色色的导线就足以把你绕花眼,所以我想说这个实验不仅仅是对你所学知识掌握情况的考察,更是对你的耐心和眼力的一种考验。

  在戴维南定理的验证实验中,了解到对于任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替此电压源的电动势Us等于这个有源二端网络的开路电压Uoc

  ,其等效内阻Ro等于该网络中所有独立源均置零时的等效电阻。这就是戴维南定理的具体说明,我认为其实质也就是在阐述一个等效的概念,我想无论你是学习理论知识还是进行实际操作,只要抓住这个中心,我想可能你所遇到的续都问题就可以迎刃而解。不过在做这个实验,我想我们应该注意一下万用表的使用,

  尽管它的操作很简单,但如果你马虎大意也是完全有可能出错的,是你整个的实验前功尽弃!

  在接下来的常用电子仪器使用实验中,我们选择了对示波器的使用,我们通过了解示波器的原理,初步学会了示波器的使用方法。在试验中我们观察到了在不同频率、不同振幅下的各种波形,并且通过毫伏表得出了在不同情况下毫伏表的读数。

  我们最后一个实验做的是一阶动态电路的研究,在这个实验中我们需要测定RL一阶电路的零输入响应,零状态响应以及全响应,学习电路时间常数的测量方法。因为动态网络的过渡过程是十分短暂的单次变化过程,如果我们选择用普通示波器过渡过程和测量有关的参数,我们就必须是这种单次变化的过程重复出现。因此我们利用信号发生器输出的方波模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。上述是在做此实验时应注意的,因为如果不使动态网络的过渡过程单次变化重复出现,会使我们所测得的值及其不准确。同时当我们把一个电容和一个电阻串联到电路中,观察示波器中所显示的波形,如果它是周期性变化的,而且近似于镰刀形,说明对于这个一阶动态电路实验已经基本上掌握!

  总的来说,通过此次电路实验,我的收获真的是蛮大的,不只是学会了一些一起的使用,如毫伏表,示波器等等,更重要的是在此次实验过程中,更好的培养了我们的具体实验的能力。又因为在在实验过程中有许多实验现象,需要我们仔细的观察,并且分析现象的原因。特别有时当实验现象与我们预计的结果不相符时,就更加的需要我们仔细的思考和分析了,并且进行适当的调节。因此电路实验可以培养我们的观察能力、动手操做能力和独立思考能力。所以对于此次电路实验我觉得很成功,因为我在这次实验中真的收获到了很多从课堂上学不到的东西,真的让我感触颇深,受益匪浅!

数字电路实训心得体会_数字电路实习总结报告 篇5

  电路实训,作为一门实实在在的实训学科,是电路知识的基础和依据。它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。在大二上学期将要结束之际,我们进行了一系列的电路实训,从简单基尔霍夫定律的验证到示波器的使用,再到一阶电路-----,一共五个实训,通过这五个实训,我对电路实训有了更深刻的了解,体会到了电路的神奇与奥妙。不过说实话在做这次试验之前,我以为不会难做,就像以前做的实训一样,操作应该不会很难,做完实训之后两下子就将实训报告写完,直到做完这次电路实训时,我才知道其实并不容易做。它真的不像我想象中的那么简单,天真的以为自己把平时的理论课学好就可以很顺利的完成实训,事实证明我错了,当我走上试验台,我意识到要想以优秀的成绩完成此次所有的实训,难度很大,但我知道这个难度是与学到的知识成正比的,因此我想说,虽然我在实训的过程中遇到了不少困难,但最后的成绩还是不错的,因为我毕竟在这次实训中学到了许多在课堂上学不到的东西,终究使我在这次实训中受益匪浅。

  下面我想谈谈我在所做的实训中的心得体会:

  在基尔霍夫定律和叠加定理的验证实训中,进一步学习了基尔霍夫定律和叠加定理的应用,根据所画原理图,连接好实际电路,测量出实训数据,经计算实训结果均在误差范围内,说明该实训做的成功。我认为这两个实训的实训原理还是比较简单的,但实际操作起来并不是很简单,至少我觉得那些行行色色的导线就足以把你绕花眼,所以我想说这个实训不仅仅是对你所学知识掌握情况的考察,更是对你的耐心和眼力的一种考验。

  在戴维南定理的验证实训中,了解到对于任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替此电压源的电动势Us等于这个有源二端网络的开路电压Uoc

  ,其等效内阻Ro等于该网络中所有独立源均置零时的等效电阻。这就是戴维南定理的具体说明,我认为其实质也就是在阐述一个等效的概念,我想无论你是学习理论知识还是进行实际操作,只要抓住这个中心,我想可能你所遇到的续都问题就可以迎刃而解。不过在做这个实训,我想我们应该注意一下万用表的使用,尽管它的操作很简单,但如果你马虎大意也是完全有可能出错的,是你整个的实训前功尽弃!

  在接下来的常用电子仪器使用实训中,我们选择了对示波器的使用,我们通过了解示波器的原理,初步学会了示波器的使用方法。在试验中我们观察到了在不同频率、不同振幅下的各种波形,并且通过毫伏表得出了在不同情况下毫伏表的读数。

  总的来说,通过此次电路实训,我的收获真的是蛮大的,不只是学会了一些一起的使用,如毫伏表,示波器等等,更重要的是在此次实训过程中,更好的培养了我们的具体实训的能力。又因为在在实训过程中有许多实训现象,需要我们仔细的观察,并且分析现象的原因。特别有时当实训现象与我们预计的结果不相符时,就更加的需要我们仔细的思考和分析了,并且进行适当的调节。因此电路实训可以培养我们的观察能力、动手操做能力和独立思考能力。

The template file 'copy.htm' not found or have no access!(1)